Gamma generalized linear models for pharmacokinetic data.

نویسندگان

  • Ruth Salway
  • Jon Wakefield
چکیده

This article considers the modeling of single-dose pharmacokinetic data. Traditionally, so-called compartmental models have been used to analyze such data. Unfortunately, the mean function of such models are sums of exponentials for which inference and computation may not be straightforward. We present an alternative to these models based on generalized linear models, for which desirable statistical properties exist, with a logarithmic link and gamma distribution. The latter has a constant coefficient of variation, which is often appropriate for pharmacokinetic data. Inference is convenient from either a likelihood or a Bayesian perspective. We consider models for both single and multiple individuals, the latter via generalized linear mixed models. For single individuals, Bayesian computation may be carried out with recourse to simulation. We describe a rejection algorithm that, unlike Markov chain Monte Carlo, produces independent samples from the posterior and allows straightforward calculation of Bayes factors for model comparison. We also illustrate how prior distributions may be specified in terms of model-free pharmacokinetic parameters of interest. The methods are applied to data from 12 individuals following administration of the antiasthmatic agent theophylline.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian paradigm for analysing count data in longitudina studies using Poisson-generalized log-gamma model

In analyzing longitudinal data with counted responses, normal distribution is usually used for distribution of the random efffects. However, in some applications random effects may not be normally distributed. Misspecification of this distribution may cause reduction of efficiency of estimators. In this paper, a generalized log-gamma distribution is used for the random effects which includes th...

متن کامل

Parameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation

 Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...

متن کامل

The Negative Binomial Distribution Efficiency in Finite Mixture of Semi-parametric Generalized Linear Models

Introduction Selection the appropriate statistical model for the response variable is one of the most important problem in the finite mixture of generalized linear models. One of the distributions which it has a problem in a finite mixture of semi-parametric generalized statistical models, is the Poisson distribution. In this paper, to overcome over dispersion and computational burden, finite ...

متن کامل

Bayesian Inference for Spatial Beta Generalized Linear Mixed Models

In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...

متن کامل

Using multivariate generalized linear latent variable models to measure the difference in event count for stranded marine animals

BACKGROUND AND OBJECTIVES: The classification of marine animals as protected species makes data and information on them to be very important. Therefore, this led to the need to retrieve and understand the data on the event counts for stranded marine animals based on location emergence, number of individuals, behavior, and threats to their presence. Whales are g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biometrics

دوره 64 2  شماره 

صفحات  -

تاریخ انتشار 2008